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Genomics is defined as the study of all of the nucleotide sequences in an organism
(see Table 1 for definition and glossary of other terms). Sequencing of the human
genome in tumors is technically daunting, but is currently being performed as part
of the Human Cancer Genome Atlas project.” One report describing an analysis
including 11 breast cancers concluded that the genomic landscape of breast cancer
is characterized by a handful of commonly mutated gene mountains and a larger
number of gene hills that are mutated at a low frequency.? In addition to mutation of
individual genes, it has recently become apparent that the genomes of breast tumors
harbor many more somatic genomic rearrangements than had previously been iden-
tified, suggesting that novel fusion genes found at these translocations may also play
a role in disease progression.® These methods are being used to identify specific
genetic changes that may contribute to the pathogenesis of breast cancer and that
may be targeted with specific therapeutic interventions, similar to targeting mutated
c-KIT with imatinib in gastrointestinal stromal tumor.# These methods are not yet
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available for routine clinical application, however. For the most part, genomic profiling
has focused on the evaluation of gene expression, or the translation of the information
encoded in genomic DNA into an RNA transcript. RNA transcripts include messenger
RNAs (mRNAs), which are translated into proteins, and various other RNAs (eg, trans-
fer RNA, ribosomal RNA, micro RNA, and noncoding RNA) that have important bio-
logic functions. For the most part, gene expression profiling in breast cancer has
focused on the evaluating expression of mRNA. However, the same principles may
be applied to the study of the epigenome,®>® micro RNAs,” proteins,® or integrative
approaches that evaluate combinations of profiling methods.®

Substantial technical advances within the past decade have facilitated high-
throughput analysis of clinical specimens for gene expression, a process that has
been referred to as genomic profiling, although gene expression profiling is the
more accurate term.'® There have likewise been important advances in bioinformatics
that permit analysis and interpretation of the huge of amount of data generated by
expression profiling.!" By combining high-throughput specimen evaluation and
sophisticated bioinformatics analysis, one can identify distinctive patterns of expres-
sion that correlate with clinical behavior or response to specific therapies. Some have
referred to these distinctive expression patterns as molecular portraits'? or signa-
tures,’® and the assays used to detect these patterns as multiparameter assays; the
latter term has been used because rather than relying on expression of a single
gene or protein, these assays typically incorporate information from measuring
expression of multiple genes by using mathematical algorithms to derive a qualitative
(eg, high vs low risk) or quantitative (eg, score) test result.’ These assays may also be
categorized as a tumor marker, a clinical assay that serves as a surrogate for defining
clinical end points, such as disease response or progression, or predicting clinical end
points, such as prognosis or response to therapy.'# 1% Although the term tumor marker
in the past has usually referred to a substance released from a tumor into the blood or
other body fluids (eg, CA27-29, CEA, PSA), it more recently has been defined more
broadly to include tissue-derived markers including multiparameter assays.

The promise and pitfalls in developing multiparameter assays have been reviewed
elsewhere,’®'® and specific criteria have been proposed for the level of evidence
required to define and support their clinical usefulness.’ Several multiparameter
assays are currently approved for clinical use, including some which have been rec-
ommended by expert panels for clinical decision making.'*2° This article focuses
on principles of gene expression profiling, and multiparameter assays that have
been developed for breast cancer. The term multiparameter assay is used inter-
changeably with the terms assay, tumor marker, and marker.

PROGNOSTIC AND PREDICTIVE MARKERS

A tumor marker is valuable only if it provides information above and beyond that
provided by classic clinicopathologic features. A prognostic marker is one that is
associated with clinical outcome, usually irrespective of the treatment given. Exam-
ples of prognostic markers include tumor size, number of positive lymph nodes, and
tumor grade. A predictive marker is one that predicts clinical benefit from a specific
therapy. Examples include estrogen receptor (ER) expression (predictive of benefit
from endocrine therapy) and HER2/neu overexpression (predictive of benefit from
anti-HER2 directed therapies). Some predictive markers are also prognostic, particu-
larly when the therapy predicted to be beneficial is not used (eg, ER, HER2 expres-
sion). Predictive markers are more difficult to develop and validate, but are of
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intrinsically greater value because they are essential in selecting patients for beneficial
therapies, more difficult to identify, and fewer.

PROCESS FOR DEVELOPMENT OF A MULTIPARAMETER ASSAY

There are several steps in the development of a marker, and a typical roadmap is
summarized in Box 1. Steps included in the process may be broadly classified as
(1) conceptualization, (2) clinical development, (3) technical development, (4) valida-
tion, and (5) application. For the purpose of maker validation, prospective trials may
be performed by retrospectively evaluating samples from completed clinical trials
with mature clinical outcomes. Models have been proposed for appropriate strategies
to validate markers prospectively in either newly initiated clinical trials, or in completed
clinical trials.?’ A critical issue is to ensure that there is sufficient sample size to
conduct training and validation studies, and in particular a sufficient number of
patients with the clinical event of interest (eg, recurrence).!” Development of an accu-
rate marker is largely a function of the interplay between sample size and classification
difficulty.?? It is not uncommon to find that several statistically equally good predictors
can be developed for any given classification problem.?® In the postdevelopment
process, there is potential for the assay to be less accurate and informative as a result
of bias in clinical application of the assay. For example, clinicians may be more apt to
use an assay in patients with intermediate clinical features, and not to use it in those
with good or poor risk clinical features.?*

METHODS FOR ANALYZING GENE EXPRESSION

There are several methods for analyzing gene expression, which have been reviewed
extensively elsewhere and which are illustrated in Fig. 1 and summarized in
Table 2.2526 |rrespective of the analysis platform used, messenger RNA (MRNA) is first
extracted from the tissues of interest (see Fig. 1A-C). Because mRNA is highly vulner-
able to degradation, sample handling at this step is critical; surgical specimens should
be frozen as soon as possible when used for analysis, or placed in appropriate preser-
vative (eg, RNA Later, Qiagen, Valencia, CA, USA). Following mRNA purification,
several platforms exist for gene expression profiling. The first gene expression micro-
array technology to enter widespread use was the 2-color microarray (see Fig. 1D).
mRNA from 2 samples (an experimental sample and a reference sample) is converted
to fluorescently labeled cDNA. Each sample is labeled with a different color (red or
green) and the samples are pooled at a 1:1 ratio and hybridized to the same microarray.
For all microarrays, each spot on the microarray represents 1 gene and the fluores-
cence intensity at each spot is proportional to the expression level of that gene in the
sample. In a single-color array (see Fig. 1E), each tumor sample is labeled with the
same fluorescent dye and hybridized to its own microarray. For both array types, after
removal of nonhybridized material by washing, images are obtained using laser scan-
ning, which detects the relative fluorescent intensity of the hybridized probe at each
spot. Before statistical analysis, the data must be normalized (see Fig. 1H) to compen-
sate for variation in labeling, hybridization, and fluorescent detection, and filtered using
specific criteria to reduce the likelihood of detecting noise. In the example shown (see
Fig. 1H), array 3 had a higher average signal intensity (red) than array 1, which, in turn,
was higher than array 2. Mathematical correction by normalization results in each array
having the same average signal intensity, thereby largely eliminating variation caused
by technical issues and allowing detection of biologically relevant differences in gene
expression between samples. When many samples are analyzed, it is often convenient
to summarize the data in a heatmap (see Fig. 1l). In this format, the patient samples are
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Box 1
Roadmap for development of a multiparameter marker or other markers

1. Conceptualization: identify clinical need and how marker addresses the clinical need

e Identify clinical problem

e Identify treatment options and costs of misclassification using standard clinicopathologic
criteria, and potential costs of misclassification with standard criteria (eg, over treatment,

under treatment)

e Identify potential clinical relevance of information provided by marker (prognostic,
predictive, or both)

2. Clinical development: marker developed (trained) in an appropriate population, typically
referred to as a training set

e Population sufficiently homogeneous and receiving uniform treatment

e Perform internal validation of classifier to assess whether it seems sufficiently accurate
relative to standard prognostic factors that it is worth further development

3. Technical development: establish technical specifications of marker to ensure reproducible
performance in clinical samples

e Establish reproducibility and reliability of assay

e Identify and minimize sources of preanalytic variability that may occur in sample
collection and processing in the clinic

e Identify and minimize sources of analytical variability in the laboratory that is conducting
the assay

4. Validation: validation of marker in other independent data sets in prospectively planned
studies

e Identify appropriate subject population for marker validation

Population appropriate for prognostic (no treatment or uniform treatment) or
predictive assay (2 or more treatment regimens administered with differing therapeutic
outcomes)

Sufficient sample size and sufficient number of events of interest
e Identify relevant clinical end point
Distant recurrence, local recurrence, organ-specific recurrence, all recurrences
Other clinically relevant end points (eg, specific toxicities)
Death (eg, from primary cancer, other cancers, toxicity, or other causes)

e Establish reliability of marker in correlating with clinical end points of interest in different
populations

5. Application: establishment or confirmation of clinical usefulness of the assay

e Prospective testing of marker in data sets that are independent of data sets used for
initial validation

e Postmarking experience

Evaluate potential biased used of assay in clinical practice (eg, use preferentially in
patients with intermediate-grade tumors)

Evaluate how test information influences clinical decision making

Adapted from Simon R. Roadmap for developing and validating therapeutically relevant
genomic classifiers. J Clin Oncol 2005;23:7332.
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Fig. 1. Summary of steps involved in sample preparation and analysis using high-
throughput genomic technologies (A-J).

typically represented in columns, and genes in rows. Genes that are expressed at levels
above the median are colored in red, close to the median in black, and below the
median in green. Other color schemes are also commonly used (eg, blue-yellow), which
may be especially helpful for individuals with red-green color blindness. By comparing
the expression level of a large number of genes in each of the samples, the technique of
hierarchical clustering can be used to determine which samples are most similar in
gene expression. For example, in Fig. 11, the samples from 2 distinct clusters are indi-
cated by the blue and purple branching in the dendrogram at the top of the heatmap.
These groups may correspond to samples with different biologic properties (eg, ER-
positive vs ER-negative tumors, or high-grade vs low-grade tumors) or groups with
different clinical outcomes (see Fig. 1J).

Two nonmicroarray-based technologies are also finding applications in this area. In
quantitative reverse-transcriptase polymerase chain reaction (QRT-PCR), RNA from
the tumor is converted to cDNA and arrayed in different wells of a multiwell plate,
each well containing specific PCR primers for a particular gene (see Fig. 1F). gRT-
PCR analysis can then be used to rapidly and accurately quantify the expression level
of each gene of interest within the sample. Unlike microarray analysis, which
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Table 2

Method

Description

Commonly used methods for measuring gene expression

Advantages

Disadvantages

Spotted cDNA
microarray (eg,
Agilent)

Glass slides

robotically spotted
with purified cDNA
clones, PCR
products from
clones, or
oligonucleotides

Ability to design

custom arrays

Operator dependent,

labor intensive, not
always reproducible,
requires fresh or
frozen tissue

Photolithography
(eg, Affymetrix
Gene Chips)

DNA probes directly

synthesized on
silicon chips

Ability to design

custom arrays

Requires frozen tissue

or placement in RNA
preservative media

Real-time reverse
transcriptase
polymerase
chain reaction
(RT-PCR)

Generate DNA copies

of RNA by reverse
transcription,
amplify DNA by
PCR, quantify DNA
product using

May be performed

using RNA
extracted from
paraffin tissue

Requires development

and validation of
probes, technical
limitations in
number of genes
that may be assayed

specific fluorescent
reagents

Can detect
mutations, splice
variants, and fusion
genes in addition
to changes in gene

RNA sequencing Massively parallel
sequencing of all

mRNAs in a sample

Expensive to run the
experiments and
time consuming to
perform the analysis

expression level

interrogates tens of thousands of genes, the gRT-PCR technology is more appropriate
when a limited group of genes is being investigated, although this method may still
allow analysis of several hundred genes simultaneously.

The recent advent of high-throughput massively parallel sequencing machines has
opened up an entirely new possibility for gene expression profiling, termed RNA
sequencing. It is now feasible to profile samples by direct sequencing of cDNAs
derived from many millions of RNA transcripts in a given sample. In addition to
providing absolute expression levels (as the precise number of transcripts can be
counted), this technology also allows the identification of alternatively spliced iso-
forms, mutations, and novel transcripts arising from fusion genes. In the example
shown (see Fig. 1G), the blue gene is more highly expressed than the red gene, result-
ing in many more sequencing reads. Furthermore, mutations and fusion genes may be
detected using this technology, which is not possible using the microarray platforms
or gRT-PCR. In this example, the yellow gene has a mutation that is detected in the
sequencing reactions, whereas the other transcript results from the fusion of 2 inde-
pendent genes (green and purple) and is recognized from sequencing reads spanning
the boundary between the 2 genes. Recent studies in breast, prostate, and leukemic
cell lines show the potential of this approach.?”-28

QUALITY CONTROL OF GENE EXPRESSION ANALYSIS METHODS

There are multiple sources of error in clinical application of multiparameter assays,
including preanalytical, analytical, and postanalytical. Approval requires meeting
specific technical requirements regarding performance, reliability, and reproducibility.
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The Microarray Quality Control (MAQC) project was organized by the US Food and Drug
Administration (FDA) to improve current and next-generation molecular profiling tech-
nologies and foster their proper applications in discovery, development, and review of
FDA-regulated products (http://www.fda.gov/ScienceResearch/BioinformaticsTools/
MicroarrayQualityControlProject/default.htm). The effort includes multiple stake-
holders, including multiple centers within the FDA and other federal agencies, major
providers of microarray platforms and RNA samples, academic laboratories, and
others. In MAQC-I, 2 human reference RNA samples were evaluated, and differential
gene expression levels between the 2 samples were calibrated with microarrays and
other technologies (eg, gRT-PCR). The resulting microarray data sets were used for
assessing the precision and cross-platform/laboratory comparability of microarrays,
and allowing individual laboratories to more easily identify and correct procedural fail-
ures.2%34 In MAQC-II, teams developed classifiers for 13 end points from 6 relatively
large training data sets, and produced more than 18,000 models that were tested by
independent and blinded validation sets generated for MAQC-II. In MAQC-III, also
called sequencing quality control, the technical performance of next-generation
sequencing platforms is being evaluated by generating benchmark data sets with refer-
ence samples and evaluating advantages and limitations of various bioinformatics
strategies in RNA and DNA analyses.

METHODS FOR BIOINFORMATICS ANALYSIS OF GENE EXPRESSION

The method by which gene expression data are analyzed depends on the objectives of
the analysis, which may be broadly classified as class comparison, class prediction, or
class discovery, as described by Simon and colleagues.'® A description of the statis-
tical analytical methods is beyond the scope of this article, but has been reviewed by
others.®® Class comparison involves determining differences in expression profiles
associated with a specific known clinical characteristic (eg, BRCA mutation-associ-
ated cancer) or outcome (eg, recurrence or organ-specific recurrence). The primary
goal of this type of analysis is to find an informative set of genes and to estimate cor-
responding population parameters, such as the individual effect of increased expres-
sion in each gene on the probability of recurrence. Given the multiplicity of testing at
the gene level, gene importance is inferred by ranking all of the genes measured on
the array by statistical significance, summarized by the magnitude of the test statistic,
corresponding P-value or adjusted P-value.3¢3” Extending the univariate approach,
modeling approaches such as linear or logistic regression may be used to adjust for
other genes of interest or known clinical factors such as tumor stage, age, or treatment
modality. Model building must take relationships between predictors (included in and
omitted from the model) into account to produce precise estimates of effect as well as
valid inferences. Statistical association does not confer predictive ability; in classifica-
tion, for example, a marker exhibiting an odds ratio as high as 3.0 is a poor classifica-
tion tool.3® Similar to, but distinct from class comparison, class prediction involves
developing a gene expression—-based algorithm that accurately predicts group
membership of a particular sample. It is well understood that high correlation between
predictors in the model does not preclude a good fit; therefore less emphasis is placed
on the interpretability of the final model in favor of highly accurate predictions. To this
end, the error rate or mean squared error is of primary importance in assessing model
performance. Predictive ability is first assessed through internal cross-validation
approaches.®® However, testing the model in independent and more heterogeneous
data sets is vital to properly evaluate its true predictive value.
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Class comparison and prediction fall into the category of top-down approaches, in
which gene expression data from cohorts with known clinical outcomes are compared
with genes that are associated with prognosis without any a priori biologic assump-
tion. After this unbiased evaluation, it has become standard to test the subset of
important genes from the ranked list or model for enrichment of specific molecular
pathways using tools such as Ingenuity IPA (Ingenuity Systems, Redwood City, CA,
USA).49 Alternatively, a bottom-up approach may be used, in which gene expression
patterns that are associated with a specific biologic phenotype or deregulated molec-
ular pathway are first identified and then subsequently correlated with the clinical
outcome.?® Class discovery may also be based on unsupervised statistical clustering
algorithms such as hierarchical or k-means clustering. An analysis of 4 validated gene
expression signatures developed either by the class discovery or bottom-up approach
(intrinsic gene set, wound-response signature) or class comparison or top-down
approach (70-gene assay, 21-gene assay) showed significant agreement in their
outcome predictions for individual patients, suggesting that they are tracking similar
biologic phenomena despite being developed by differing methodologies.*! Although
proliferation is the strongest parameter predicting clinical outcome in the ER-positive/
HER2-negative subtype and the common denominator of most currently available
prognostic gene signatures, immune response and tumor invasion are predominant
molecular processes associated with prognosis in the triple negative and HER2-posi-
tive subgroups, respectively.*?

VALIDITY, REPRODUCIBILITY, AND REPORTING OF MICROARRAY STUDIES

Several steps are typically involved in properly developing a gene expression signa-
ture, including identifying the signature in a training set, and then validation of the
signature in other data sets. There are methods for internally cross-validating the
signature in the same data set, but external validation is always necessary in other
data sets. Failure to properly adhere to these fundamental principles has led some
to challenge the validity and reproducibility of microarray-based studies.*® Dupuy
and Simon** specifically evaluated the quality of 42 microarray-based breast cancer
studies published in 2004 and found that at least 50% contained at least 1 funda-
mental methodological flaw. The most common design flaws included inadequate
control for multiple testing, a spurious claim for class discovery using outcome-related
genes, and biased estimation of predictive accuracy by improper cross-validation. All
of these deficiencies could potentially contribute to false discovery. The investigators
proposed guidelines including dos and don’ts that are essential reading for anyone
engaged in the clinical development of gene expression signatures.

Criteria have been developed for assessing and reporting tumor markers, including
multiparameter assays, called the REMARK guidelines (reporting recommendations
for tumor marker prognostic studies). These guidelines were developed by an expert
panel to address methodological deficiencies that were commonplace in most reports
evaluating tumor markers, including multiparameter gene assays on recommendation
of the first meeting held in 2000 of the National Cancer Institute-European Organiza-
tion for Research and Treatment of Cancer (NCI-EORTC) First International Meeting on
Cancer Diagnostics. The guidelines provide relevant information about the study
design, preplanned hypotheses, patient and specimen characteristics, assay
methods, and statistical analysis methods. The guidelines are intended to encourage
transparent and complete reporting of the relevant information for the scientific
community. Most peer-reviewed journals require that reports describing tumor
markers, including multiparameter assays, follow the REMARK guidelines to be
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considered for publication. In addition, standards termed minimal information about
a microarray experiment (MIAME) for reporting the data have been established by
the Microarray Gene Expression Data Society,*® and most journals require that the
gene expression data described in the publication be deposited in a publicly available
database (eg, Gene Expression Omnibus (http://www.ncbi.nim.nih.gov/geo)).

REGULATORY APPROVAL OF MULTIPARAMETER ASSAYS

Approval of multiparameter breast cancer assays had been regulated in the past
under the provisions of the Clinical Laboratory Improvement Act of 1988 (CLIA), which
provided the basis for approval of the Oncotype DX assay.*® The regulations apply to
laboratories that examine human specimens for the diagnosis, prevention, or treat-
ment of any disease or assessment of health. The FDA released a guidance document
in 2007 indicating that approval of multiparameter assays falls under regulatory juris-
diction of the agency under regulations governing approval of medical devices (http://
www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/
ucm079163.htm#1). A gene expression profiling test system for breast cancer prog-
nosis was defined as a device that measures the RNA expression level of multiple
genes and combines this information to yield a signature (pattern or classifier or index)
to aid in prognosis. Approval provided by this mechanism is commonly known as
510(k) clearance. There are currently 4 approved multiparameter assays, which are
summarized in Table 3 and described in greater detail later.

CLASSIFIERS DEVELOPED BY SUPERVISED ANALYSIS

Several classifiers have been developed by comparing gene expression profiles from
relapsing versus nonrelapsing cancers, including a 70-gene profile,*”*® 76-gene
profile,*9°0 21-gene profile,>'°2 and 2-gene HOXB13/IL17BR ratio.®>3>=°6 The charac-
teristics of the populations used for the external validations studies and key results
are shown in Table 4.

70-Gene Assay

A 70-gene assay associated with prognosis was first identified in a test set of breast
tumors derived from 117 women treated at the Netherlands Cancer Institute in
Amsterdam.®® RNA extracted from frozen tumor specimens was analyzed using the
Rosetta Hu25K microarrays for expression of nearly 25,000 genes, and supervised
classification was applied to identify a gene expression signature strongly predictive
of a short interval to distant metastases (poor prognosis signature) in patients with
lymph node-negative disease, and a signature that identified tumors of BRCA1
carriers. The poor prognosis signature consisted of genes regulating cell cycle, inva-
sion, metastasis, and angiogenesis. The signature was then prospectively validated in
a separate cohort of 295 consecutive patients treated at the same institution less than
53 years of age with stage | to Il primary breast carcinoma associated with negative
(n = 151) or positive (N = 144) axillary lymph nodes, of whom 180 (61%) had a poor
prognosis signature and 115 (39%) had a good-prognosis signature.*® The probability
of remaining free of distant metastases was 51% and 85% for the high- and low-risk
signatures, respectively. The estimated hazard ratio (HR) for distant metastases 5.1
(95% confidence interval [Cl] 2.9-9.0) for the high- compared with the low-risk signa-
ture, which remained significant when adjusted for clinical covariates in a multivariable
Cox regression analysis. The 70-gene signature subsequently was externally validated
in a separate validation set consisting of 307 patients 60 years of age or less with
primary breast cancers measuring 5 cm or less associated with negative axillary lymph
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nodes who received no adjuvant systemic therapy, including endocrine therapy (71%
had ER-positive disease).*’

76-Gene Assay

A 76-gene assay associated with prognosis was first identified in a test set derived
from 286 patients with lymph node—-negative breast cancer who received no adjuvant
systemic therapy treated at the Erasmus Cancer Institute in Rotterdam, the
Netherlands, of whom 73% had ER-positive disease.®° In contrast to the populations
in which the 70-gene assay was validated, this analysis did include patients 60 years
or older, or who had T3 to T4 tumors (only 3% for the latter). RNA extracted from frozen
tumor specimens was analyzed using the Affymetrix Human U133a GeneChips for
expression of 22,000 transcripts. In a training set of 115 tumors, a 76-gene signature
consisting of 60 genes for ER-positive tumors and 16 genes for ER-negative tumors
was identified. An external validation study was subsequently performed in 180
patients of any age with tumors less than 5 cm in diameter and negative axillary nodes
who received no systemic adjuvant therapy, including endocrine therapy.*® The HR for
distant metastasis within 5 years was 7.4 (95% CI 2.6-20.9), and was 11.4 (95% CI
2.67-48.4) when adjusted for clinical covariates. For distant metastases at 5 years,
the sensitivity was 90% and specificity was 50%. The positive and negative predictive
values were 38% (95% CI 29%-47%) and 94% (95% CIl 86%-97%), respectively.

2-Gene HOXB13/IL17BR Ratio

Ma and colleagues developed a 2-gene ratio training set which included 60 women
with ER-positive breast cancer. An expression signature predictive of disease-free
survival was reduced to a 2-gene ratio, HOXB13/IL17BR.®" The investigators also
evaluated the biologic function by ectopic expression of HOXB13 in MCF10A breast
epithelial cells, and showed that transfection enhanced motility and invasion in vitro.
High HOXB13/IL17BR ratio was subsequently evaluated in a separate validation set
including 206 women with ER-positive breast cancer and was significantly associated
with inferior disease-free survival (HR 2.38, 95% CI 1.30-4.36) and overall survival (HR,
2.48,95% CIl 1.22-5.06) in 130 patients with axillary lymph node—negative disease, but
not in the 76 patients with lymph node—-positive disease. A separate validation study
was performed in 619 patients with operable ER-positive breast cancer treated with
adjuvant tamoxifen, and 193 patients with metastatic breast cancer receiving first-
line tamoxifen therapy for metastatic disease. An increased HOXB13/IL17BR ratio
was inferior disease-free survival for node-negative patients only. For patients with
metastatic disease when adjusted for clinical covariates, a high ratio was the strongest
predictor in multivariate analysis for a poor response to tamoxifen therapy (odds
ratio = 0.16; 95% CI 0.06-0.45) and a shorter progression-free survival (HR 2.97;
95% CI 1.82-4.86).

Genomic Grade Index

Sotiriou and colleagues® compared the gene expression profile of tumors associated
with poor and good histologic grade, and applied the grade signature to those with
intermediate grade to predict outcomes in those with an intermediate grade. Microar-
ray data from 64 ER-positive breast cancers derived from 3 published gene expres-
sion data sets were analyzed for differential gene expression in tumors associated
with a poor versus good histologic grade, which identified 97 genes that were differ-
entially expressed, most involved in cell cycle regulation and proliferation. In an inde-
pendent validation data set including 597 tumors, the gene expression grade index
was strongly associated with histologic grade. However, among tumors with
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intermediate histologic grade, the index spanned the values for histologic grade 1 to 3
tumors, and a high molecular grade gene expression grade index was associated with
a higher risk of recurrence (HR 3.61, 95% CI 2.25-5.78). The 97-gene genomic grade
index (GGI) was subsequently reduced to a 5-cell cycle-related genes to molecular
grade index (MGlI) and evaluated in 2 publicly available microarray data sets including
410 patients, followed by development of a real-time RT-PCR assay that was tested in
2 additional cohorts including 323 patients. MGl performed as consistently as the
more complex 97-gene GGI.%° In addition, the analysis showed that in patients treated
with endocrine therapy, MGl and HOXB13/IL17BR modified each other’s prognostic
performance; high MGl was associated with significantly worse outcome only in
combination with high HOXB13/IL17BR ratio, and likewise, high HOXB13/IL17BR
was significantly associated with poor outcome only in combination with high MGl.

21-Gene Assay (Oncotype DX Recurrence Score)

The 21-gene assay was developed using different methods from those previously
described. The assay includes 16 tumor-associated genes and 5 reference genes,
with the result expressed as a computed recurrence score (RS).%2 The genes selected
for incorporation in the model were derived from a panel of 250 candidate genes that
was assembled by searching the published literature, genomic databases, pathway
analysis, and microarray-based gene expression profiling experiments performed in
fresh frozen tissue to identify genes likely to be associated with prognosis. The
gene panel was tested in formalin-fixed paraffin-embedded primary tumor samples
from 447 patients with breast cancer.®>%° Genes were tested in a heterogenous group
because it was hypothesized that the genes most highly correlated with recurrence
would survive evaluation across diverse patients and treatments. Genes that were
consistently significant across multiple studies provided the basis for developing of
the RS model. The tumor-related genes included in the algorithm include genes
involved in ER signaling (ESR1, PGR, BCL2, SCUBE2), proliferation (Ki67, STK15, Sur-
vivin, CCNB1, MYLB2), Her2 signaling (HER2, GRB?7), invasion (MMP-11, CTSL2), and
other genes involved in immune function (CD68), drug metabolism (GSTM1), and
apoptosis (BAGT). Relative expression levels of the 16 genes are measured in relation
to average expression levels of 5 reference genes (the latter are not included in the RS
calculation). A score is generated for each gene ranging from 0 to 15, with each integer
of 1 corresponding to a 2-fold increase in RNA expression level. For each of the gene
groups, the mean of the values from each gene group is obtained. The mean expres-
sion value for each of the 4 gene groups plus the expression level for each of the 3 indi-
vidual genes are each multiplied by a coefficient. RS is calculated using the sum of the
adjusted RNA expression values for each gene group or gene. Greater relative weight
is reflected by the higher coefficient values derived for the proliferation, HER2, and ER-
related genes. Higher expression levels for favorable genes (ER group, GSTM1, BAGT)
result in a lower RS (as a result of a negative coefficient in the algorithm), whereas
higher expression of unfavorable genes (proliferation group, HER2 group, invasion
group, and CD68) contribute to a higher RS (as a result of a positive coefficient in
the algorithm). The analytical and operational performance specifications defined for
the Oncotype DX assay allow the reporting of quantitative RS values for individual
patients with a standard deviation of within 2 RS units on a 100-unit scale.®®

Several pivotal studies have been performed evaluating the 21-gene assay, which are
summarized in Table 4. The assay was first tested in a prospective validation study that
was performed in patients with ER-positive, node-negative breast cancer who received
a 5-year course of tamoxifen in the National Surgical Adjuvant Breast and Bowel Project
(NSABP) trial B-14.5267-5% The study included 668 of 675 patients for whom tumor
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blocks were available and who had sufficient tumor for analysis. When evaluated as
a categorical variable, the proportions of patients categorized as having an RS defined
as low (<18), intermediate (18-30), or high (>31) risk by the RT-PCR assay were 51%,
22%, and 27 %, respectively. The Kaplan-Meier estimates of the rates of distant recur-
rence at 10 years in the low-, intermediate-, and high-risk groups were 7%, 14%, and
31%, respectively. In a multivariate Cox model, RS predicted distant recurrence inde-
pendent of age and tumor size, and was also predictive of overall survival. The prog-
nostic usefulness of the 21-gene assay was subsequently validated in other data sets
including patients with ER-positive disease, including a population-based study
including lymph node-negative patients treated with tamoxifen,®' lymph node—positive
or —negative patients treated with adjuvant anastrozole,®° or patients with up to 3 posi-
tive axillary nodes treated with adjuvant tamoxifen plus doxorubicin-containing chemo-
therapy.®® Subsequent evaluation in other data sets indicated that high RS was
associated with benefit from adjuvant cyclophosphamide, methotrexate, and 5-fluoro-
uracil (CMF) chemotherapy in patients with ER-positive, lymph node-negative breast
cancer, and from cyclophosphamide, doxorubicin, and 5-fluoroucacil (CAF) in post-
menopausal patients with node-positive breast cancer.®®

MULTIPARAMETER ASSAYS COMPARED WITH INTEGRATED CLINICAL INFORMATION

Most studies evaluating multiparameter assays have evaluated the assay in models
adjusted for clinical covariates to show that the assay provides additional information
beyond that provided by clinical features.?® Some reports have described models inte-
grating molecular and clinical data into an algorithm that is more accurate in predicting
clinical outcomes than either alone.”® Some reports have described a comparison of
risk stratification predicted by the assay compared with treatment guidelines (eg, St
Gallen critieria2%), indices based on clinical factors (eg, Nottingham Prognostic Index
[NPI]’"), or Adjuvant! Online (http://www.adjuvantonline.com), a web-based tool that
predicts 10-year breast cancer outcomes with and without adjuvant systemic therapy
that has been validated in a population-based study.”? Patients were also assigned to
the clinicopathologic low-risk group if their 10-year survival probability, as estimated
by Adjuvant! software,’? was greater than 88% for ER-positive tumors or 92% for
ER-negative tumors.

Buyse and colleagues*’ evaluated the 70-gene profile in 307 patients who received
no adjuvant systemic therapy. The prognostic information provided with the 70-gene
profile was compared with risk categories assigned by the St Gallen criteria, NPI, or
Adjuvant!. Ten-year survival estimated by Adjuvant! was defined as low risk if 92%
or higher for ER-positive disease, and 88% for ER-negative disease; a lower threshold
was used for ER-positive disease because it was estimated that the use of endocrine
therapy would result in a 4% absolute improvement in survival at 10 years. The gene
signature exhibited comparable sensitivity for distant recurrence when compared with
clinical features as assessed by Adjuvant! Online (87%), NPI (79%), or St Gallen
criteria (96%). On the other hand, the specificity of the high-risk signature for distant
metastases (42%) appeared better than some clinical predictors, such as the St Gallen
criteria (10%) or Adjuvant! Online (29%), but not others such as the NPI (48%). Other
studies have shown that the 21-gene assay does not correlate with Adjuvant! Online,
suggesting that the assay provides complementary information.5873

CLASSIFIERS DEVELOPED BY OTHER METHODS

Several markers that have been developed by other methods are summarized in
Table 5, including the intrinsic gene set or PAM50 developed using what would be
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best characterized as an unsupervised method, and the wound-response signature
and invasive signature developed using a bottom-up approach.

Intrinsic Breast Cancer Subtypes and PAM50

Perou and colleagues’? first reported the intrinsic breast cancer subtypes by evalu-
ating variation in gene expression patterns using hierarchical clustering in a set of
65 breast cancers from 42 individuals using complementary DNA microarrays repre-
senting 8102 human genes. When a panel of 534 intrinsic genes selected from the
microarray were tested in other data sets, the findings were recapitulated.”*"° It
was hypothesized that these subtypes had distinctive gene expression profiles
because they originated from different cell types, including luminal epithelial cells
(the cells that line the duct and give rise to most breast cancers) and basal epithelial
cells of the normal mammary gland (characterized by expression of cytokeratins 5/6
and 17). The intrinsic gene panel was subsequently reduced to a panel of 50 genes,
using microarray and qRT-PCR, with 10 genes selected for each centroid used to
define each of 4 intrinsic subtypes, including luminal A, luminal B, basal, and HER2-
enriched, plus a fifth category defined as normal, which indicates a sample that had
insufficient tumor material to permit accurate classification.”®’® This assay has
been referred to as the PAM50, because it was developed using the prediction anal-
ysis of microarray method, and because it include 50 genes; each tumor analyzed by
this method is assigned to gene expression centroid representing the specific subtype
it is most similar to. After development of the assay in a training set including 189
prototype samples, its prognostic usefulness was subsequently validated in test
sets from 761 patients who received no systemic adjuvant therapy, and its predictive
usefulness was validated in 133 patients for prediction of pathologic complete
response (pCR) to a neoadjuvant taxane and anthracycline regimen. With regard to
prognosis, the intrinsic subtypes showed prognostic significance and remained signif-
icant in multivariable analyses that incorporated clinical covariates. In addition, a prog-
nostic model for node-negative breast cancer was developed using intrinsic subtype
and clinical information; the C-index estimate for the combined model (subtype and
tumor size) was significantly better than either clinicopathologic model or subtype
model alone. The intrinsic subtype model predicted neoadjuvant chemotherapy effi-
cacy with a negative predictive value for pCR of 97%.

WOUND-RESPONSE SIGNATURE

Chang and colleagues’® hypothesized that features of the molecular program of
normal wound healing might play an important role in cancer metastasis and identified
consistent features in the transcriptional response of normal fibroblasts to serum,
which they characterized as the wound-response signature. This signature was found
to be associated with distant metastases-free survival and overall survival in a data set
including 295 patients with early breast cancer. The signature was subsequently vali-
dated in separate data set and found to reliably differentiate normal and malignant
breast tissue,’® and to be significantly associated with local recurrence.°

INVASIVE GENE SIGNATURE

Liu and colleagues’’ hypothesized that a subpopulation of breast cancer cells
exhibited greater tumorigenic capacity that could be identified by expression of high
expression of CD44 with low or undetectable expression of CD24 (CD44+CD24-/
low), they developed a 186-gene invasive gene signature (IGS) by comparing the
gene expression profile of CD44+CD24—/low tumorigenic breast cancer cells with
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that of normal breast epithelium. There was a significant association between the IGS
and overall and metastasis-free survival that was independent of established clinical
and pathologic variables, and was more significant when combined with the
wound-response signature. The IGS was also associated with the prognosis in other
cancer types, including medulloblastoma and carcinoma of the lung and prostate.

PROSPECTIVE CLINICAL TRIALS EVALUATING MULTIPARAMETER ASSAYS

Two clinical trials are prospectively evaluating multiparameter assays in clinical prac-
tice.?® In the TAILORXx trial (Trial Assigning Individualized Options for Treatment),
patients 75 years of age or younger with ER-positive, HER2-negative, axillary node-
negative breast cancer who meet established National Comprehensive Cancer
Network (NCCN) guidelines for adjuvant chemotherapy have the treatment assigned
or randomized from the 21-gene assay results (NCT00310180). Patients with a low
RS are directed to endocrine therapy and those with high RS are directed to chemo-
endocrine therapy, whereas those with an indeterminate midrange RS (11-25) are
randomized to receive chemoendocrine therapy (the standard treatment arm) or endo-
crine therapy alone (the experimental arm).®! In the MINDACT trial (Microarray in
Node-Negative Disease May Avoid Chemotherapy) trial (NCT00433589), patients
with stage | to Il breast cancer undergo risk assessment by the 70-gene assay and
Adjuvant! Online and are assigned to endocrine therapy alone if genomic and clinical
criteria are concordant for low-risk disease and chemoendocrine if concordant for
high-risk disease; patients whose risk is discordant by genomic and clinical features
are randomized to treatment assigned by clinical or genomic criteria.

Several gene expression signatures have been identified that are predictive of
response to neoadjuvant chemotherapy.?®82-84 An ongoing prospective clinical trial
is evaluating whether a multiparameter is more accurate in predicting response to
therapy than clinical criteria (NCT00336791).

CLINICAL USEFULNESS OF MULTIPARAMETER ASSAYS AND CONCLUSIONS

Clinical usefulness is defined by whether a marker informs clinical decision making,
and whether patients benefit from that information. Two expert reviews have indicated
that evidence supporting the clinical usefulness of gene expression profiles for breast
cancer is insufficient.8%-8¢ On the other hand, expert panels convened by the American
Society of Clinical Oncology (ASCO) and NCCN concluded that certain multiparam-
eter assays such as the 21-gene assay show clinical usefulness and recommend their
use in specific clinical scenarios.'*8” These recommendations are based largely on
validation studies reporting a benefit from chemotherapy in high-risk subjects as iden-
tified by multiparameter gene expression assay.®’ It is biologically plausible that high-
risk populations identified by other assays might also benefit from chemotherapy,
because poor-risk signatures are driven by high expression of proliferation-associated
genes that predict response to chemotherapy (particularly in ER-positive, HER2-nega-
tive disease).*?

Information provided by markers may influence clinical decision making in several
ways summarized in Table 6, including treatment sparing, selection, direction, and
confirmation. Markers have been used thus far predominantly in patients with ER-
positive disease; in this clinical scenario, although the risk of recurrence is reduced
by adjuvant endocrine therapy, there may be a considerable residual risk of recurrence
that typically results in a recommendation for adjuvant chemotherapy according to
expert-based guidelines to further reduce the risk of recurrence.'*2° The residual
risk of recurrence after endocrine therapy, and the potential benefits of adding
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Table 6
Potential influence of multiparameter assay in clinical decision making
Therapeutic Therapeutic
Recommendation Recommendation
Influence of Marker Based on Clinical Based on Molecular Clinical Usefulness/
on Treatment Features Markers Benefit
Sparing Yes No Reduce unnecessary
therapy
Selection No Yes Reduce recurrence risk
Direction Uncertain Yes or no Provide therapeutic
recommendation
Confirmation Yes or no Same as Reinforce therapeutic
recommendation recommendation
based on clinical
features
No influence Uncertain Uncertain None

chemotherapy, may be estimated by using validated algorithms such as Adjuvant!
Online that integrate clinicopathologic and treatment information.”? Although adding
chemotherapy reduces the risk of recurrence on average by about 25% to 30%, the
absolute benefit for an individual patient is small, ranging from 1% to 5%.5° However,
many patients are willing to accept adjuvant chemotherapy even if the likelihood of
benefit is small.®® Therefore, many subjects with low-risk disease (eg, ER-positive,
node-negative) are overtreated with chemotherapy, because most would have been
cured with endocrine therapy alone. In treatment sparing, the clinical features indicate
a need for chemotherapy, but the molecular marker is discordant by indicating a favor-
able prognosis without therapy, thereby resulting in sparing of adjuvant chemo-
therapy. In treatment selection, the clinical features indicate a favorable prognosis,
but the molecular marker is discordant by indicating an unfavorable prognosis with
endocrine therapy alone, thereby resulting in selection of chemotherapy in an indi-
vidual for whom it otherwise would not have been recommended. In treatment direc-
tion, there is a position of therapeutic equipoise regarding a recommendation for
adjuvant chemotherapy based on clinical criteria, and the marker provides direction
toward a clear treatment path. Treatment confirmation occurs when a marker confirms
a therapeutic recommendation that was made on clinical features alone, which may be
of intangible value to the patient and the clinician. However, only treatment sparing
and selection, and arguably treatment direction, seem to meet the definition of
demonstrable clinical usefulness. It has also been clearly established that equipoise
or uncertainty may remain even after the results of a molecular marker are available.
Several reports have indicated that application of the 21-gene assay or the 70-gene
assay results in a change in therapeutic recommendations in approximately 20% to
25% of patients, usually in the direction of treatment sparing.89-°1

Although these principles currently apply primarily to the use of multiparameter
markers for providing a recommendation for adjuvant chemotherapy recommenda-
tion, particularly in ER-positive disease, these same principles could be applied to
in other scenarios. For example, specific signatures have been identified for organ-
specific recurrence, including recurrence in bones,®? lungs,®® and brain®* These signa-
tures may be useful for selecting individuals most likely to benefit from organ-specific
therapies, such as bisphosphonates to prevent bone metastases,®® or for specific
therapies more likely to penetrate the blood-brain barrier.®® Other potential
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applications include identification of cancers that may need no additional local or
systemic therapy after diagnostic biopsy, locally therapeutic excision, or ablation.®’
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